Composting

What is composting?
Controlling the natural process of decay to transform organic wastes into a valuable soil amendment called compost.

Benefits of adding compost to soil
• Supplies organic matter
• "Lightens" heavy soils
• Improves moisture retention in sandy soils
• Contains humus – "soil glue"
• Improves soil structure

Benefits of adding compost to soil
• Encourages vigorous root growth
• Allows plants to more efficiently utilize nutrients
• Enables soils to retain nutrients
• Buffers soil pH
• Supplies beneficial microorganisms
• Feeds soil life

How is compost made?
Natural process:
Biological decomposition of organic matter in the presence of oxygen

Human influenced:
We can speed up or slow down the process

Microbes do the work
- Bacteria (including actinomycetes) and fungi
- Chemical decomposers – enzymes
- Found in:
 • Soil
 • Leaves
 • Food scraps
 • Manure
 • Finished compost

Are compost starters needed?
One teaspoon of good garden soil to which compost has been added may contain:
- 100 million bacteria
- 800 feet of fungal threads

Macroorganisms

Needs for the composting process

Acceptable materials – “food for decomposers”
- Leaves, grass clippings and yard debris
- Kitchen scraps: vegetable and fruit peels, coffee grounds and egg shells
- Used potting soil
- Paper and cardboard
- Manure from herbivores
- Most weeds and garden debris
- Sawdust, hay and straw
- Hair, fur and other natural fibers

Compost pile “food” to avoid
- Persistent weeds: crabgrass and quackgrass, invasive species and weeds gone to seed
- Meat, dairy and oils
- Cat or dog waste
- Diseased plants
- Lime and ashes
- Treated lumber or sawdust

Plant materials treated with pesticides
- Some pesticides can be persistent
- Some survive the composting process
- Can damage other plants
Organisms need a balanced diet – Carbon (C) and Nitrogen (N) –

Composting will be most rapid if the decomposers are fed a diet of carbon-rich and nitrogen-rich materials

*Carbon-rich materials are known as “browns”
*Nitrogen-rich materials are known as “greens”

Rule-of-thumb is 2-3 browns for every green by volume

C:N Ratio

<table>
<thead>
<tr>
<th>Materials High in Carbon</th>
<th>C/N*</th>
</tr>
</thead>
<tbody>
<tr>
<td>autumn leaves</td>
<td>30-80:1</td>
</tr>
<tr>
<td>straw</td>
<td>40-100:1</td>
</tr>
<tr>
<td>wood chips or sawdust</td>
<td>100-500:1</td>
</tr>
<tr>
<td>bark</td>
<td>100-130:1</td>
</tr>
<tr>
<td>mixed paper</td>
<td>150-200:1</td>
</tr>
<tr>
<td>newspaper or corrugated cardboard</td>
<td>560:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials High in Nitrogen</th>
<th>C/N*</th>
</tr>
</thead>
<tbody>
<tr>
<td>vegetable scraps</td>
<td>15-20:1</td>
</tr>
<tr>
<td>coffee grounds</td>
<td>20:1</td>
</tr>
<tr>
<td>grass clippings</td>
<td>15-25:1</td>
</tr>
<tr>
<td>manure</td>
<td>5-25:1</td>
</tr>
</tbody>
</table>

Effects of Carbon:Nitrogen ratios on composting

Materials high in carbon break down slowly

*High C:N = 30:1 and higher amounts of C

Diet, continued

Materials that are too rich in nitrogen can lead to anaerobic conditions in the compost pile

*Low C:N = less than 25:1

Oxygen

A pile starved for air will become anoxic or even anaerobic

* Oxygen acids and amines (stinky compounds)
* Aerobic activity stops

Compost pile is out-of-balance

* Food or water out-of-balance (low C:N ratio or pile is too wet)
* Too many greens

Manure Analysis Information Sheet

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>1st Result</th>
<th>2nd Result</th>
<th>3rd Result</th>
<th>4th Result</th>
<th>5th Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Volume (ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment:

- [] Liquid Muscle
- [] Trace Elements
- [] Plant Food
- [] Fish Emulsion
- [] Kelp
- [] Blood Meal
- [] Bone Meal
- [] Oyster Shell
- [] Fish Bone
- [] Lime
- [] Dried Fish
- [] Fish Oils

Type of Storage:

- [] Liquid
- [] Powder
- [] Granules
- [] Pellets
- [] Solid
- [] Fertilizer
- [] Organic
- [] Compost
- [] Manure
- [] Soil
- [] Compost Tea
- [] Tea Blend
- [] Powdered Fish
- [] Fish Emulsion
- [] Kelp
- [] Blood Meal
- [] Bone Meal
- [] Oyster Shell
- [] Fish Bone
- [] Lime
- [] Dried Fish
- [] Fish Oils

Note: This is a sample manure analysis information sheet.
Water

Vital to support compost pile organisms

"Damp as well as wrung-out sponge"

40% to 60% moisture

Temperature

90° – 140° is optimal

Temperatures above 130° can kill pathogens and weed seeds

Excessive temps (greater than 160°) can kill beneficial organisms

Does my compost have to get hot?

Good compost can be made in a pile that never gets hot, but

* Decay will be slower
* Not enough air, too little water or too many browns in the mix could all keep a pile from heating

High pile temperature provides the benefit of

* The most rapid composting
* Killing pathogenic (disease causing) organisms
* Killing weed seeds

Choosing a compost strategy

Hot piles

* Process takes about three months
* Plan ahead
* Store brown

Cool piles

* Process takes one-half to two years
* Add materials as they accumulate
* Less effort

Troubleshooting

Nothing is happening!

* Pile is too dry
* Not enough “greens”

My pile stinks!

* Too wet
* Excess “greens”
* Pile compacted

Pests

When the composting process should be finished

Finished is also known as “mature” or “stable” compost

Compost is dark, loose and crumbly

Organic materials are unrecognizable

Ambient temperature
Composting key points

✓ Balanced diet
✓ Keep pile damp
✓ Turn pile when you need to